低温等离子体技术应用
低温等离子体技术应用范围广,气体的流速和浓度对于气态污染物治理技术应用来说是两个非常重要的因素。生物过滤和燃烧技术能应用于较高浓度范围 山东等离子除臭原理,但却受气体的流速所限;电子束照射技术仅有一非常窄的气体流速范围。而低温等离子体技术对气体的流速和浓度都有一个很宽的应用范围,其应用广泛不言而喻。等离子体技术工艺简单,吸附法要考虑吸附剂的定期更换,脱附时还有可能造成二次污染;燃烧法需要很高的操作温度;联合催化法中,催化剂存在选择性,某些条件(如温度过高)会造成催化剂失活 等离子,光催化法只能利用紫外光等;生物法要严格控制pH值、温度和湿度等条件,以适合微生物的生长。而低温等离子体技术则较好的克服了以上技术的不足,反应条件为常温常压,反应器结构简单,并可同时消除混合污染物(有些情况还具有协同作用),不会产生二次污染等。就经济可行性来说,低温等离子体反应装置本身系统构成就单一紧凑,在运行费用方面 山东等离子除臭装置,微观来讲,因放电过程只提高电子温度而离子温度基本保持不变 潍坊等离子除臭原理,这样反应体系就得以保持低温,所以不仅能量利用率高,而且使设备维护费用也很低。
低温等离子体技术在气态污染物治理方面优势显著。其基本原理是在电场的加速作用下,产生高能电子,当电子平均能量**过目标治理物分子化学键能时,分子键断裂,达到消除气态污染物的目的。
速率分布
一般气体的速率分布满足麦克斯韦分布,但等离子体由于与电场的耦合,可能偏离麦克斯韦分布。
等离激元
表面等离激元(surfaceplasmon)效应--实验里我们把金属的微小颗粒视为等离子体(金属晶体因为其内部存在大量可以移动的自由电子----带有定量电荷,自由分布,且不会发生碰撞导致电荷的消失----因此金属晶体可以被视为电子的等离子体),由于金属的介电系数在可见光和红外波段为负数,因此当把金属和电介质组合为复合结构时会发生很多有趣的现象。当光波(电磁波)入射到金属与介质分界面时,金属表面的自由电子发生集体振荡,如果电子的振荡频率与入射光波的频率一致就会产生共振,这 时就形成的一种特殊的电磁模式:电磁场被局限在金属表面很小的范围内并发生增强,这种现象就被称为表面等离激元现象。 这种电磁场增强效应能够有效地提高分子的荧光产生信号,原子的高次谐波产生效率,以及分子的拉曼散射信号等。在宏观的尺度上这一现象就表现为在特定波长,状态下的金属晶体的透光率的大幅提升 ??子已不再被束缚于原子核,而成为高位能高动能的自由电子。